TITLE: GCN CIRCULAR NUMBER: 39277 SUBJECT: LIGO/Virgo/KAGRA S250211be: Identification of a GW compact binary merger candidate DATE: 25/02/11 04:56:55 GMT FROM: Hisaaki Shinkai at Osaka Institute of Technology The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration report: We identified the compact binary merger candidate S250211be during real-time processing of data from LIGO Hanford Observatory (H1), LIGO Livingston Observatory (L1), and Virgo Observatory (V1) at 2025-02-11 04:35:43.152 UTC (GPS time: 1423283761.152). The candidate was found by the CWB BBH [1], GstLAL [2], and MBTA [3] analysis pipelines. S250211be is an event of interest because its false alarm rate, as estimated by the online analysis, is 1.8e-08 Hz, or about one in 1 year, 9 months. The event's properties can be found at this URL: https://gracedb.ligo.org/superevents/S250211be After parameter estimation by RapidPE-RIFT [4], the classification of the GW signal, in order of descending probability, is BBH (99%), Terrestrial (1%), NSBH (<1%), or BNS (<1%). Assuming the candidate is astrophysical in origin, the probability that the lighter compact object is consistent with a neutron star mass (HasNS) is <1%. [5] Using the masses and spins inferred from the signal, the probability of matter outside the final compact object (HasRemnant) is <1%. [5] Both HasNS and HasRemnant consider the support of several neutron star equations of state. The probability that either of the binary components lies between 3 and 5 solar masses (HasMassGap) is <1%. Two sky maps are available at this time and can be retrieved from the GraceDB event page: * bayestar.multiorder.fits,1, an initial localization generated by BAYESTAR [6], distributed via GCN notice about 32 seconds after the candidate event time. * bayestar.multiorder.fits,2, an initial localization generated by BAYESTAR [6], distributed via GCN notice about 5 minutes after the candidate event time. The preferred sky map at this time is bayestar.multiorder.fits,2. For the bayestar.multiorder.fits,2 sky map, the 90% credible region is 1530 deg2. Marginalized over the whole sky, the a posteriori luminosity distance estimate is 3638 +/- 1204 Mpc (a posteriori mean +/- standard deviation). For further information about analysis methodology and the contents of this alert, refer to the LIGO/Virgo/KAGRA Public Alerts User Guide https://emfollow.docs.ligo.org/. [1] T. Mishra et al. PRD 105, 083018 (2022) doi:10.1103/PhysRevD.105.083018 [2] Tsukada et al. PRD 108, 043004 (2023) doi:10.1103/PhysRevD.108.043004 and Ewing et al. (2023) arXiv:2305.05625 [3] Aubin et al. CQG 38, 095004 (2021) doi:10.1088/1361-6382/abe913 [4] Rose et al. (2022) arXiv:2201.05263 and Pankow et al. PRD 92, 023002 (2015) doi:10.1103/PhysRevD.92.023002 [5] Chatterjee et al. ApJ 896, 54 (2020) doi:10.3847/1538-4357/ab8dbe [6] Singer & Price PRD 93, 024013 (2016) doi:10.1103/PhysRevD.93.024013